Treating Drug Abuse and Addiction in the Criminal Justice System: Improving Public Health and Safety

Redonna K. Chandler; Bennett W. Fletcher; Nora D. Volkow


http://jama.ama-assn.org/cgi/content/full/301/2/183

Contact me if this article is corrected.

Contact me when this article is cited.

Contact me when new articles are published in these topic areas.

Medical Practice; Law and Medicine; Public Health; Substance Abuse/Alcoholism; Public Health, Other; Quality of Care; Patient Safety/Medical Error; Drug Therapy; Drug Therapy, Other

Subscribe
http://jama.com/subscribe

Email Alerts
http://jamaarchives.com/alerts

Permissions
permissions@ama-assn.org
http://pubs.ama-assn.org/misc/permissions.dtl

Reprints/E-prints
reprints@ama-assn.org
Treating Drug Abuse and Addiction in the Criminal Justice System
Improving Public Health and Safety

Redonna K. Chandler, PhD
Bennett W. Fletcher, PhD
Nora D. Volkow, MD

Despite increasing evidence that addiction is a treatable disease of the brain, most individuals do not receive treatment. Involvement in the criminal justice system often results from illegal drug-seeking behavior and participation in illegal activities that reflect, in part, disrupted behavior ensuing from brain changes triggered by repeated drug use. Treating drug-involved offenders provides a unique opportunity to decrease substance abuse and reduce associated criminal behavior. Emerging neuroscience has the potential to transform traditional sanction-oriented public safety approaches by providing new therapeutic strategies against addiction that could be used in the criminal justice system. We summarize relevant neuroscientific findings and evidence-based principles of addiction treatment that, if implemented in the criminal justice system, could help improve public health and reduce criminal behavior.

JAMA. 2009;301(2):183-190

©2009 American Medical Association. All rights reserved.
(Reprinted) JAMA, January 14, 2009—Vol 301, No. 2
Drug Abuse or Dependence

<table>
<thead>
<tr>
<th>Inmate Type</th>
<th>Drug Use</th>
<th>Drug Abuse or Dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At Time of Offense</td>
<td>In Month Prior to Offense</td>
</tr>
<tr>
<td>Local jail inmates</td>
<td>128,030 (29)</td>
<td>242,720 (55)</td>
</tr>
<tr>
<td>State inmates</td>
<td>390,610 (52)</td>
<td>686,670 (56)</td>
</tr>
<tr>
<td>Federal inmates</td>
<td>34,140 (26)</td>
<td>64,910 (50)</td>
</tr>
</tbody>
</table>

a Convicted jail inmates only. If all jail inmates are included, 50% were under the influence of drugs at the time of the offense, and about two-thirds were regular users.
b Weighted estimates derived from the US Bureau of Justice Statistics Survey of Inmates in Local Jails, 2002. A stratified sample of 66,822 inmates were interviewed (9.9% refusal rate) in 417 jails (of 465 selected). Survey methodology is described in Karberg and James.
c Weighted estimates derived from the US Bureau of Justice Statistics Survey of Inmates in State and Federal Correctional Facilities, 2004. In the state prison sample, a total of 27,499 inmates were interviewed (10.2% refusal rate) in 287 state prisons (of 301 selected). In the federal prison sample, a total of 7,066 inmates were interviewed (13.3% refusal rate) in 39 federal prisons (of 40 selected). Survey methodology is described in Mumola and Karberg.

laping to drug use. These include the stigma associated with being labeled an ex-offender, the need for housing and legitimate employment, stresses in re-unifying with family, and multiple requirements for criminal justice supervision.11,12

Returning to neighborhoods associated with preincarceration drug use places the addicted individual in an environment rich in drug cues. As discussed below, these conditioned cues automatically activate the reward/motivational neurocircuitry and can trigger an intense desire to consume drugs (craving).13 The molecular and neurobiological adaptations resulting from chronic drug use persist for months after drug discontinuation,14 and evidence exists that compulsive seeking of drugs when addicted individuals are reexposed to drug cues progressively increases after drug withdrawal.15 This could explain why many drug-addicted individuals rapidly return to drug use following long periods of abstinence during incarceration and highlights the need for ongoing treatment following release.

Drug Abuse Treatment Effectiveness in the Criminal Justice System

Research over the last 2 decades has consistently reported the beneficial effects of treatment for the drug abuser in the criminal justice system.16,17 These interventions include therapeutic alternatives to incarceration, treatment merged with judicial oversight in drug courts, prison- and jail-based treatments, and reentry programs intended to help offenders transition from incarceration back into the community.18,19 Through monitoring, supervision, and threat of legal sanctions, the justice system can provide leverage to encourage drug abusers to enter and remain in treatment.

Behavioral treatments are the most commonly used interventions for addressing substance use disorders. Evidence-based behavioral interventions include cognitive therapies that teach coping and decision-making skills, contingency management therapies that reinforce behavioral changes associated with abstinence, and motivational therapies that enhance the motivation to participate in treatment and in non-drug-related activities.19,20 Many residential treatment programs rely on the creation of a “therapeutic community” based on a social learning model.21 Medications such as methadone, buprenorphine, and naltrexone are beneficial for the treatment of heroin addiction and naltrexone and topiramate for the treatment of alcoholism.22-24 Self-help programs such as Alcoholics Anonymous or SMART Recovery can be valuable adjuncts to formal drug treatment.25

Research has consistently shown that community-based drug abuse treatment can reduce drug use and drug-related criminal behavior.25 A meta-analysis of 78 comparison-group community-based drug treatment studies found treatment to be up to 1.8 times better in reducing drug use than the usual alternatives.20 In a meta-analysis of 66 incarceration-based treatment evaluations, therapeutic community and counseling approaches were respectively 1.4 and 1.5 times more likely to reduce reoffending.27 Drug courts combine judicial supervision with drug treatment as an alternative to incarceration; their graduates have rearrest rates about half those of matched comparison samples and much lower than those of drug court dropouts.28 Individuals who participated in prison-based treatment followed by a community-based program postincarceration were 7 times more likely to be drug free and 3 times less likely to be arrested for criminal behavior than those not receiving treatment.29,30

The benefits of medications for drug treatment were shown in a recent randomized trial in which heroin-dependent inmates began methadone treatment in prison prior to release and continued in the community postrelease. At 1-, 3-, and 6-month follow-up, patients who received methadone plus counseling were significantly less likely to use heroin or engage in criminal activity than those who received only counseling.21-23 The potential exists for immediate adoption of methadone maintenance for incarcerated persons with opioid addictions, but most prison systems have not been receptive to this approach.34 Economic analyses highlight the cost-effectiveness of treating drug-involved offenders.35 On average, in-

Table 1. Inmate Drug Use, Abuse/Dependence, and Treatment

<table>
<thead>
<tr>
<th>Inmate Type</th>
<th>Drug Use</th>
<th>Drug Abuse or Dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At Time of Offense</td>
<td>In Month Prior to Offense</td>
</tr>
<tr>
<td>Local jail inmates</td>
<td>128,030 (29)</td>
<td>242,720 (55)</td>
</tr>
<tr>
<td>State inmates</td>
<td>390,610 (52)</td>
<td>686,670 (56)</td>
</tr>
<tr>
<td>Federal inmates</td>
<td>34,140 (26)</td>
<td>64,910 (50)</td>
</tr>
</tbody>
</table>
Incarceration in the United States costs approximately $22,000 per month, and there is little evidence that this strategy reduces drug use or drug-related reincarceration rates for nonviolent drug offenders. By contrast, the average cost of methadone is $4,000 per month, and treatment with methadone has demonstrated effectiveness in reducing drug use and criminal activity following release. Alternatives to incarceration can also defray job productivity losses and the separation from family and social support systems.

The cost of integrating volunteer-led self-help organizations such as Alcoholics Anonymous and Narcotics Anonymous into criminal justice settings is nominal and could provide support to the recovery efforts of addicted persons in the criminal justice system. One dollar spent on drug courts is estimated to save approximately $4 in avoided costs of incarceration and health care, and prison-based treatment saves between $2 to $6. These economic benefits in part reflect reductions in criminal behavior.

### Access to Treatment

Drug education—not drug treatment—is the most common service provided to prisoners with drug abuse or addiction problems. More than one-quarter of state inmates and 1 in 5 federal inmates meeting abuse/dependence criteria participate in self-help groups such as Alcoholics Anonymous while in prison. However, though treatment during and after incarceration has been shown to significantly reduce drug use and drug-related crime, less than 20% of inmates with drug abuse or dependence receive formal treatment (Table 1).

In a recent survey of correctional programs and organizations across the United States, most correctional agencies reported providing some type of drug abuse treatment services; however, the median percentage of offenders who had access to those services at any given time was low, usually less than 10% (Table 2). Even if a correctional institution does provide treatment, the continuity of treatment postincarceration, which is essential to recovery, is often lacking when the drug-involved offender transitions from incarceration to community supervision.

### Table 2. Access to Treatment Services in Correctional Facilities

<table>
<thead>
<tr>
<th>Service Type</th>
<th>Prisons (n = 98)</th>
<th>Jails (n = 57)</th>
<th>Community Corrections (n = 134)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Physical/mental health services</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV testing</td>
<td>89.1%</td>
<td>68.7%</td>
<td>73.4%</td>
</tr>
<tr>
<td>HIV/AIDS counseling</td>
<td>80.5%</td>
<td>50.1%</td>
<td>80.3%</td>
</tr>
<tr>
<td>Hepatitis C testing</td>
<td>98.2%</td>
<td>79.6%</td>
<td>74.1%</td>
</tr>
<tr>
<td>Mental health assessment</td>
<td>99.8%</td>
<td>86.5%</td>
<td>94.6%</td>
</tr>
<tr>
<td>Mental health counseling</td>
<td>96.3%</td>
<td>58.9%</td>
<td>94.5%</td>
</tr>
<tr>
<td><strong>Pharmacological treatment</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methadone</td>
<td>8.9%</td>
<td>&lt;1.0%</td>
<td>54.5%</td>
</tr>
<tr>
<td>Other medications for</td>
<td>12.4%</td>
<td>NA</td>
<td>36.8%</td>
</tr>
<tr>
<td>substance use disorder</td>
<td></td>
<td></td>
<td>2.4%</td>
</tr>
<tr>
<td><strong>Medication for mental illness</strong></td>
<td>80.3%</td>
<td>NA</td>
<td>85.4%</td>
</tr>
<tr>
<td><strong>Substance abuse services</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detoxification</td>
<td>12.2%</td>
<td>&lt;1.0%</td>
<td>26.0%</td>
</tr>
<tr>
<td>Alcohol/drug education</td>
<td>74.1%</td>
<td>8.3%</td>
<td>61.3%</td>
</tr>
<tr>
<td>Outpatient counseling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤4 h/wk</td>
<td>54.6%</td>
<td>3.4%</td>
<td>59.8%</td>
</tr>
<tr>
<td>≥5 h/wk</td>
<td>47.1%</td>
<td>2.7%</td>
<td>22.5%</td>
</tr>
<tr>
<td><strong>Therapeutic community</strong></td>
<td>26.9%</td>
<td>6.6%</td>
<td>26.3%</td>
</tr>
</tbody>
</table>

**Abbreviations:** HIV, human immunodeficiency virus; NA, not applicable.

©2009 American Medical Association. All rights reserved.

(Reprinted) JAMA, January 14, 2009—Vol 301, No. 2 185
tem as a medical condition; as a consequence, treatment is not constitutionally guaranteed as is the treatment of other medical conditions.

**Neurobiology of Addiction**

Addiction is a chronic brain disease for which genetic factors are believed to contribute 40% to 60% of the vulnerability. Repeated drug exposure in individuals who are vulnerable (because of genetics, or developmental or environmental factors) trigger neuroadaptations in the brain that result in the compulsive drug use and loss of control over drug-related behaviors that characterizes addiction. Molecular and neuroimaging studies have helped illuminate how genes may affect vulnerability to addiction and how repeated use of addictive drugs causes long-lasting disruptions to the structure and function of the brain. Among the genes identified to contribute to the vulnerability for addiction are those that participate in the neuroplastic changes associated with learning. Imaging studies have identified multiple brain circuits that are disrupted in addicted persons; these include circuits involved in reward and motivation, learning and memory, cognitive control, mood, and interoception (awareness of physiological body signals) (FIGURE). Disruption of these circuits impairs the addicted person’s ability to inhibit intentional actions or to control strong emotions and desires and also increases the likelihood that the individual will have difficulties making adaptive decisions.

Addiction also decreases sensitivity in the reward and the motivational circuits, which modulate response to positive as well as negative reinforcers. Practically, this suggests that an addicted individual may experience less motivation to pursue activities likely to result in beneficial outcomes and to avoid those that could result in punishment. One can also predict that dysfunction in this neurocircuitry would reduce an addicted person’s motivation to abstain from drug use because alternative reinforcers (natural stimuli) are comparatively weaker and negative consequences (eg, incarceration) are less salient.

In parallel, the repeated use of drugs leads to the formation of new linked memories that condition the addicted individual to expect pleasurable responses—not only when exposed to a drug but also when exposed to stimuli associated with the drug. These stimuli trigger automatic responses that frequently drive relapse, even in individuals motivated to stop taking drugs. The

---

**Figure. Proposed Network of Brain Circuits Involved With Addiction**

<table>
<thead>
<tr>
<th>A</th>
<th>Nonaddicted individual</th>
<th>B</th>
<th>Addicted individual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibitory control</td>
<td>Inhibitory control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interoception</td>
<td>Interoception</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reward</td>
<td>Reward</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mood</td>
<td>Mood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory</td>
<td>Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motivation</td>
<td>Motivation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Circuits work together and change with experience. Each is linked to an important concept: reward (saliency), motivation (drive), memory (learning associations), inhibitory control (conflict resolution), mood (well-being), and interoception (internal awareness). Size of circuit ovals indicates influence in determining behavioral outcomes. Thicker line weights indicate greater influence on regulation of the circuit. A, In a nonaddicted person the decision to consume a drug (same process pertains for natural rewards) is a function of the balance between the expected pleasure (based on past experience or memory), alternative stimuli (this includes internal states such as mood and interoception but also alternative external rewards), and potential negative outcomes that oppose the motivation to take the drug (inhibitory control exerted by prefrontal cortex) and stop the drug use. B, During addiction, the enhanced value of the drug in the reward, motivation, and memory circuits overcomes the inhibitory control exerted by the prefrontal cortex, thereby favoring a positive feedback loop initiated by the consumption of the drug and perpetuated by enhanced activation of the motivation/drive and memory circuits. Decreased sensitivity to rewards also raises the hedonic threshold, disrupting mood and increasing the saliency values of drugs and behaviors temporarily associated with relief from the dysphoria. Learning and conditioning result in an enhanced interoceptive awareness of discomfort and the associated desire for the drug (craving). Absence of lines from inhibitory control circuit to reward and motivation circuits indicates loss of regulation.
enhanced sensitivity to drugs as rewards and the conditioning to associated drug cues increase the interoceptive awareness of discomfort (anxiety and tension) that occurs when the individual is exposed to drug cues and increase the desire to consume the drug. Additionally, repeated drug use also affects brain regions implicated in mood and anxiety, which could explain the high rate of addiction comorbid with dysphoria, depression, or both and the vulnerability of the addicted person to relapse when exposed to social stressors.

Impairment of the neural substrates affected by addiction—particularly those concerned with behavioral inhibition, control of emotions and desires, and decision-making—increase the likelihood that addicted individuals will make choices that appear impulsive. This idea is supported by research in the emerging area of behavioral economics, which has found that addicted individuals differ from those who do not use drugs in how they make decisions. Addicted individuals tend to have higher levels of temporal discounting than those who do not use drugs; ie, they tend to choose immediate, smaller rewards over future, larger rewards. High temporal discounting is also associated with impulsivity—the inability to delay immediate gratification and to recognize the potential for negative consequences.

Many of the neurobiological changes associated with repeated drug use persist for long periods after drug discontinuation. This helps explain why addicted individuals who have ceased drug use are at high risk of relapse and provides neurobiological support for the recognition of addiction as a chronic relapsing disease.

What are the implications of neuroscience research for how society and clinicians might regard the addicted offender? There are at least 3 implications for how this emerging knowledge about the neurologic basis of addictive behavior is important.

First, of most importance, neuroscience’s uncovering of new molecular targets implicated in the responses to drugs and of new knowledge on the function of the human brain provides new targets for medication development and behavioral interventions in addiction. Although many of the neurobiological changes associated with repeated drug use persist for long periods after drug discontinuation, research suggests that the impaired brain can regain some of the functions damaged by use of illicit drugs over time.

Second, neuroscience establishes a biological framework for understanding aspects of addictive behavior that otherwise seem to defy rational explanation. In the absence of known biological determinants, these behaviors often have been attributed to “moral weakness.” Identifying the neurologic factors underlying addictive behavior can place these moral arguments into a more reasoned context. Addiction does not absolve one of responsibility for use of illicit drugs or for criminal behavior, but understanding how addictive drugs affect behavior through brain mechanisms can inform decisions to provide treatment to addicted individuals. For example, mandated treatment may be useful for drug-involved offenders who would otherwise not engage in the treatment process or make progress toward recovery. The persistence of neurologic deficits provides support for the recognition of addiction as a chronic disease and highlights the need for the same continuity of care so important in treatment of other chronic diseases (eg, asthma, hypertension).

Third, neuroscience may help addicted individuals to better under-
stand their own addiction. Such individuals may become frustrated when their efforts to control their own drug use are unsuccessful, and even with treatment many become frustrated with what is often a slow and tenuous recovery process. The neurobiology of the brain can help the addicted individual put this disease into a more understandable context and thereby facilitate effective treatment. Little research has been conducted in the field of addiction on whether knowing more about the substance use disorder is useful in helping to sustain recovery, and more research is needed. However, the concept of the “expert patient” who serves as his or her own best health advocate in a recovery management paradigm has been promoted for chronic disorders. As with these other illnesses, addiction must be managed by the individual over time to sustain recovery.

**Principles of Drug Abuse Treatment for Offenders.** *Principles of Drug Abuse Treatment for Criminal Justice Populations,* published by the National Institute on Drug Abuse, synthesizes research on drug abuse treatment for drug abusers in the criminal justice system. It is intended as a resource for criminal justice professionals and the treatment community working with drug abusers involved with the system. The publication summarizes 20 years of research to provide guidance on evidence-based practices and identifies general principles on how to effectively address the drug abuse problems of populations involved with the criminal justice system (Box).  

**Implementing the Principles.** Effective interventions depend on a coordinated response between criminal justice agencies, drug abuse treatment providers, mental health and physical health care organizations, and social service agencies. Each type of criminal justice agency (eg, jail, drug court, probation, prison) has its own role in sanctioning and supervision and lends itself to specific intervention opportunities. TABLE 3 provides a simplified overview of the criminal justice system and identifies the points at which intervention is possible.

Effective integration of drug treatment interventions into criminal justice settings requires matching the intervention to the organization. For example, since jail stays are usually brief, the interventions best suited to jails may be screening for drug and alcohol abuse, other mental illnesses, and medical conditions (eg, HIV, hepatitis B or C), with referral to community-based treatment providers. Implementing these principles throughout the criminal justice and drug abuse treatment systems also requires that these systems work together to address the addicted individual’s drug use, comorbid mental disorders and medical conditions, if present, and criminal behavior. Treatment professionals should understand the criminal justice process and the supervision requirements of their patients. In addition to addressing drug use behaviors, treatment outcomes improve when antisocial and criminal behaviors are targeted of clinical intervention.  

**Substance Abuse Treatment Research in Criminal Justice Settings.** Prison environments are inherently coercive, and special safeguards have been developed to ensure that prisoners can choose freely whether to participate in biomedical research without fear of consequence. Beyond mere equipoise, clinical trials must be designed so the research is of benefit to the prisoner participant regardless of the assigned study group. Within these constraints, it is important to conduct re-

---

**Table 3. Intervention Opportunities in Criminal Justice Systems**

<table>
<thead>
<tr>
<th>Stage</th>
<th>Offender Event</th>
<th>Participants</th>
<th>Intervention Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry</td>
<td>Arrest</td>
<td>Crime victim, Police, FBI</td>
<td>Screening or referral</td>
</tr>
<tr>
<td>Prosecution</td>
<td>Court, Pretrial release, Jail</td>
<td>Crime victim, Police, FBI, Judge</td>
<td>Diversion programs, Community-based treatment TASCa</td>
</tr>
<tr>
<td>Adjudication</td>
<td>Trial</td>
<td>Prosecutor, Defense attorney, Defendant, Jury</td>
<td>NA</td>
</tr>
<tr>
<td>Sentencing</td>
<td>Fines, Community supervision, Incarceration</td>
<td>Jury, Judge</td>
<td>Drug court, Terms of incarceration, Release conditions</td>
</tr>
<tr>
<td>Corrections</td>
<td>Probation, Jail, Prison</td>
<td>Probation officers, Correctional personnel</td>
<td>Screening and treatment for substance use disorders, Other mental illnesses, Motor vehicle, Medical disorders</td>
</tr>
<tr>
<td>Community reentry</td>
<td>Probation, Parole, Release</td>
<td>Probation or parole officer, Family, Community-based providers</td>
<td>Drug treatment, Aftercare, Mental health, Employment, Medical care, Halfway house TASC</td>
</tr>
</tbody>
</table>

Abbreviations: FBI, Federal Bureau of Investigation; NA, not applicable; TASC, Treatment Accountability for Safer Communities.

aInterventions of the TASC organization are based on a case management model for integrating criminal justice and drug abuse treatment services.
search to help improve substance abuse treatment and to assist in the successful transition of the substance abuser to the community. To facilitate research in this area, the National Institute on Drug Abuse created the Criminal Justice Drug Abuse Treatment Studies research cooperative, a network of correctional agencies linked with treatment research centers and community treatment programs.

Opiate agonist medications used for the treatment of heroin addiction such as methadone and buprenorphine are underused in correctional populations. Naltrexone, an opiate antagonist, was developed to treat heroin addiction but also has been approved for treating alcoholism. Naltrexone is likely to be more acceptable in the criminal justice setting than agonist medications. However, the poor compliance with naltrexone has limited its use in the treatment of heroin addiction. The recent development of a long-lasting depot formulation for naltrexone obviates this limitation, and a multisite clinical trial (NCT00781898) is currently evaluating its effectiveness in heroin-addicted probationers. Another area of research intended to reduce relapse in addicted offenders is the development of vaccines against cocaine, methamphetamine, or heroin.

Several avenues currently exist for providing drug abuse treatment as an alternative to incarceration. Drug courts were intended to provide a bridge between drug treatment and adjudication; from the first drug court established in Miami in 1989, drug courts have increased in number to nearly 2000 today. States such as Arizona, California, and New York have created treatment alternatives to incarceration for first-time drug offenders, juvenile offenders, and others. Many states are coming under political pressure to reduce the costs associated with incarceration by diverting nonviolent drug offenders to treatment.

**Conclusions**

Punishment alone is a futile and ineffective response to drug abuse, failing as a public safety intervention for offenders whose criminal behavior is directly related to drug use. Addiction is a chronic brain disease with a strong genetic component that in most instances requires treatment. The increase in the number of drug-abusing offenders highlights the urgency to institute treatments for populations involved in the criminal justice system. It also provides a unique opportunity to intervene for individuals who would otherwise not seek treatment.

The challenge of delivering treatment in a criminal setting requires the cooperation and coordination of 2 disparate cultures: the criminal justice system organized to punish the offender and protect society and the drug abuse treatment systems organized to help the addicted individual. Addressing addiction as a disease does not remove the responsibility of the individual, which is the argument frequently used to resist recognizing and treating addiction as an illness. Rather it highlights the personal responsibility of the addicted person to seek and adhere to drug treatment and that of society to ensure that such treatment is available and based on scientific evidence. Only a small percentage of those requiring treatment for drug addiction seek help voluntarily; in light of this, the criminal justice system provides a unique opportunity to intervene and disrupt the cycle of drug use and crime in a cost-effective manner.

**Author Contributions:** Study concept and design: Chandler, Fletcher, Volkow. Analysis and interpretation of data: Fletcher. Drafting of the manuscript: Chandler, Fletcher, Volkow. Critical revision of the manuscript for important intellectual content: Chandler, Fletcher, Volkow. Administrative, technical, or material support: Chandler, Fletcher, Volkow.

**Financial Disclosures:** None reported.

**Funding/Support:** This article was written by staff from the National Institute on Drug Abuse and there was no external funding for this work.

**Disclaimer:** The statements in this article are those of the authors and not necessarily those of the National Institute on Drug Abuse.

**Additional Contributions:** We thank Faye S. Taxman, PhD, and Matthew Perdoni, MS, both of George Mason University, for data on physical/medicinal, mental health, and substance use services (Table 2) from the NIDA National Criminal Justice Drug Abuse Treatment Studies (CJ-DATS) National Criminal Justice Treatment Practices Survey. Neither of these individuals received compensation for their contributions.

**REFERENCES**


